inven2

Tankyrase inhibition for therapy of lung fibrosis

Researchers at Oslo University Hospital (OUH) have developed OM-247, a first-in-class small-molecule drug candidate targeting tankyrase (TNKS) inhibition. This novel therapeutic approach addresses idiopathic pulmonary fibrosis (IPF) by modulating the WNT/YAP signaling pathways, which are central drivers of fibrosis.

Business Opportunity

OM-247 shows potent anti-fibrotic activity in vitro, ex vivo (human precision-cut lung slices), and in validated rodent models. The compound exhibits favorable pharmacological and drug-like properties, positioning it as a promising candidate for clinical development. Currently, there are no TNKS inhibitors in clinical trials for lung fibrosis—an area of high unmet medical need. IPF is a progressive and fatal form of lung fibrosis, with a median survival of only three years after diagnosis. Moreover, patients recovering from severe viral lung infections, including COVID-19, are at increased risk of developing fibrosis, highlighting the urgent need for more effective therapies.

Technology Description

- OM-247 demonstrates favorable ADME properties and oral/inhalation PK profiles.
- Supported by a robust preclinical proof-of-concept dataset, including efficacy in vitro, ex vivo (human lung tissue), and in vivo in mouse and rat models.
- Current IPF therapies (Pirfenidone and Nintedanib) offer only modest efficacy and are associated with significant adverse effects.
- Aberrant WNT/β-catenin and YAP signaling are central to fibrosis progression.
- OM-247 is a highly potent and selective TNKS1/2 inhibitor, directly modulating these pathways.
- No TNKS/WNT/YAP inhibitors are currently in clinical development for fibrotic diseases—providing a clear first-mover advantage.

Category

Therapies/Small Molecules

Authors

Aina Haugen Rengmark Ken Rosendal

Further information

Ken Rosendal

ken.rosendal@inven2.com

View online

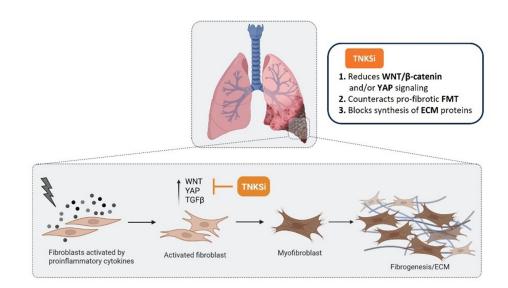


Fig. 1: Model for TNKS inhibitor anti-fibrotic mechanism of action.

Intellectual Property

WO2019/243822 published 29.12.2019 and WO2022/008896 published 13.01.2022.

References

- Brinch SA, Amundsen-Isaksen E, Espada S, et al.(2022 Apr 20), https://aacrjournals.org/cancerrescommun/article/2/4/233/694510/The-Tankyrase-Inhibitor-OM-153-Demonstrates, https://aacrjournals.org/cancerrescommun, 2(4), 233-245
- 2. Leenders RGG, Brinch SA, Sowa ST, et al.(2021), https://pubs.acs.org/doi/10.1021/acs.jmedchem.1c01264, https://pubs.acs.org/journal/jmcmar, 64(24), 17936-17949
- 3. Waaler J, Leenders RGG, Sowa ST, et al.(2020) , https://pubs.acs.org/doi/10.1021/acs.jmedchem.0c00208, https://pubs.acs.org/journal/jmcmar, 63(13), 6834-6846